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correlations versus mutual information 
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Federal Republic of Germany 
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Abstract. A one-dimensional lattice of logistic maps is investigated in the case of strong 
nonlinearity and strong coupling. Although the dynamics may be classified as fully 
developed turbulence, spatio-temporal structure can be detected by computing time-delayed 
mutual information and two-point correlations. The correlation is found to be superior in 
detecting weak structure. An improved algorithm for mutual information is described. 

Coupled map lattices show a variety of interesting phenomena which are typical for 
spatially extended systems. They have been studied in one and two dimensions [ 1,2] 
using various couplings and local maps. 

In this letter we choose linear next-neighbour coupling: 

x n +  I ( i )  = ( 1 - E ) f ( x n  ( i ) 1 + E /2[f(xn ( i - 1 ) 1 + f ( x n  ( i + 1 11 1 (1) 

where n denotes the discrete time and i the lattice point. The local dynamics will be 
given by the logistic map: 

f ( x )  = Q -x2. (2) 

Depending on the choice of parameters this system shows laminar phases as well as 
spatio-temporal intermittency and fully developed turbulence. A detailed phase 
diagram can be found in [3]. We concentrate on the case E = 213 and 1.97 < a < 2. 
For these parameters the system shows characteristic features of turbulent dynamics. 
Temporal correlations decay roughly exponentially with a characteristic time of 
approximately 18 iterations. The amplitude of the spatial correlations is damped 
exponentially as well, the correlation length being less than four sites. Since correlations 
are strongly suppressed, it might be expected that it is hard to detect any structure at 
all. As we shall see in the following, this is not the case. 

To compute two-point correlations we evaluate the expression 

U and U being site amplitudes x , ( i )  and x n t h n ( i + A i )  at sites separated by a distance 
Ai  and a time delay An. In principle one can take the average over all iterations and 
all sites, but to reduce redundancy for limited CPU time it is preferable to take only 
independent pairs separated by a few sites and iterations. 
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In some cases [4] mutual information is preferred to correlations because it is 
sensitive to more general dependencies than correlations. Let U and v be continuous 
random variables and P,, and P, be partitions of the respective domains. Then (U, U) 
forms a two-component variable and a partition P,,, of its domain can be obtained by 
forming the direct product of P,, and P,. Let p . ( j )  denote the probability that an 
isolated measurement of U falls in thej th  element of Pu, or that U is found in ‘state’ 
j and define p , ( k )  similarly. Then pu, ( j ,  k )  is the probability that U is in state j and 
v is in state k in a simultaneous measurement. The mutual information [5] between 
U and v is then given by: 

(4) 
p u u ( j ,  k) 

Zdu, 0) = C p, , , ( j ,  k )  log2 
1.k p u  ( j )  Po( k ) .  

It measures what we learn about the value of v if we perform a measurement on U. 
It is symmetric in its arguments and, for smooth distributions, tends to a finite limit 
for increasing refinement of the partition. In contrast to the analogous formula for 
Shannon information, this limit is invariant under reparametrisation. In our case the 
variables U and v are again site amplitudes at sites separated by A i  and An. 

As for most dimension-like quantities, several algorithms exist to compute mutual 
information. For finite data samples, of course, a finite partition has to be used. 
Because the p , , ( j )  and p , ( k )  can be rather sharply peaked even for uncorrelated data, 
it is disadvantageous to use a fixed grid of boxes. An efficient algorithm using a 
two-dimensional tree was developed by Fraser [4]. Our algorithm is also based on 
the idea of a two-dimensional tree; nevertheless the data structure will be much simpler. 
We want to partition a rectangle containing m x 4k points into 4k rectangles with m 
points each. This is done as follows (see also figure 1). First of all the ranks R,, and 
R, with respect to U and v are computed (standard quicksort routine). From now on 

Figure 1. Method of partitioning. The simple case of 32 points is shown. See text for 
explanation. 
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these ranks are used as coordinates. Using the ranks R, as indices one can easily 
rearrange the points with increasing U. Now two parts are formed with respect to U 
(thick vertical line in figure 1). Using the ranks R,, the points within each half are 
separately ordered with increasing U and then cut into two with respect to U (thick 
horizontal lines). The same procedure is applied to each of the resulting four rectangles 
and so on. At each level the locations of the corners of the new rectangles are computed, 
using the corners of the old rectangles and the positions of the cutting lines, which 
are chosen to be halfway between the two points next to the cut. At the last level the 
projections of the rectangles onto the axes give P, and P,. The probability put. is 4-k, 
while p, (  j )  and p,(  k) are estimated as the number of points in the intervalj (respectively 
k) divided by the total number of points. Note that a new level can be obtained 
completely from the last, so the same storage can be used for all levels. 

As with any method of partitioning, this procedure induces systematic errors for 
finite data sets. We have not been able to compute these errors a priori (they are 
known for other algorithms [6-81). Instead we take the value of Zh,,A, computed for 
uncorrelated data (large A n  and A i )  as a correction. 

A considerable amount of time is spent on ranking the points (U, U )  with respect 
both to U and U. In the case that U and U are series of amplitudes at fixed lattice sites 
taken at consecutive time steps, a delay is introduced simply by shifting the series 
relative to each other. The ranking of the shifted series reduces then to a simple 
modification of the unshifted ranks. Mutual information then can be computed for 
655 360 = 40 x 214 points in less than 1.5 seconds on a Cray Y-MP computer. Statistical 
errors can be reduced and estimated by taking the average over several runs. 

Since the model is homogeneous and isotropic we find correlations and mutual 
information symmetric to A i  = 0 and An = 0. The system is modulated with a temporal 
period of two. This has no effect on the mutual information, but the correlation 
alternates in sign. We plot C ‘ =  (-l)AflCAn,h, rather than IC[ to be sure not to lose any 
information. 

Some structure can already be seen in the binary representation (figure 2). A pattern 
of period about 7 occurs in clusters of considerable duration extending over a few 
spatial periods. Clusters more than two periods wide are extremely seldom. That 
makes it difficult to give a more exact value of the period. The predominance of a 
certain spatial wavelength is clearly reflected in the structure of the correlation function, 
which is modulated with the same spatial period. It is interesting that for finite lattices 
there is a laminar attractor of temporal period 2 or 4 and spatial wavelength between 
7 and 8, depending on the actual lattice size. The transient length in the investigated 
range of lattice sizes (up to 60) increases exponentially with lattice size, being about 
lo7 iterations for a lattice of 60 sites. Very long transients could be an explanation 
why we did not find this state in our ‘large’ systems (1000 to 4000 sites). The dynamics 
of the transients appear to be stationary, so the system could be classified as ‘TT2’ 
according to [9, 101. The exponential increase of transient length can be easily under- 
stood if the laminar state is reached by forming a coherent cluster of the size of the 
lattice and the probability to form such a large cluster decreases exponentially with 
its size. 

Results for correlation functions and mutual information are shown in figures 3-5. 
For both we see a phenomenon which is not visible in the binary representation. For 
fixed spatial distance A i  the maximum is not simply at zero delay. Instead the mutual 
information generally becomes maximal at Anmax # 0. A similar effect is seen by [ 113 
in a logistic map lattice and by [12] in a system of coupled Rossler models, where it 
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Figure 2. Binary representation. Logistic map lattice, U = 2.0, E = 2/3. Even time steps are 
shown after 10 000 transients. A site is blackened if the amplitude lies above the unstable 
fixed point of the logistic map. 

Figure 3. Two-point correlations. Lines of equal correlation using linear interpolation 
between integer A n  and Ai. Lines are drawn for C' = 2 - k ( k  = 1, . . . , l o )  and C' = 0, regions 
of positive C' are shaded. The diagonal is the line An =Ai. Correlations are computed 
using every 5th site out of 4000 and every 100th iteration out of lo8, i.e. 8x IO-' points. 
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Figure 4. Mutual information, distance six sites. Average of 100 runs with 655 360 points 
each. Note maxima at An = *5. 

Figure 5. Mutual information. Values of IAn.ai are displayed as grey levels. A black field 
is shown for Ian,Ai > 0.1; for IAn,Ai < 0.001 the field is left white. 
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is interpreted as information transport with a defined velocity. Following this interpre- 
tation in our case leads to some strange conclusions. The velocity defined by U =  
lAnmax/Ail decreases for increasing distance but can even be greater than one for short 
distances. For example at A i  = 6 the mutual information is maximal at Anmax = * 5 ,  
which would correspond to superluminar information ‘transport’. 

We have seen in the present letter that two-point correlations in coupled map 
lattices show, in general, more structure than mutual information. Moreover they are 
easier to compute, although the currently used algorithm for mutual information seems 
to be the fastest so far described in the literature. Finally we pointed out that there 
cannot be a simple connection between mutual information and information transport, 
as conjectured in [12]. 

I wish to thank P Grassberger for many useful discussions. 
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